Phylogenomic Study of Lipid Genes Involved in Microalgal Biofuel Production—Candidate Gene Mining and Metabolic Pathway Analyses
نویسندگان
چکیده
Optimizing microalgal biofuel production using metabolic engineering tools requires an in-depth understanding of the structure-function relationship of genes involved in lipid biosynthetic pathway. In the present study, genome-wide identification and characterization of 398 putative genes involved in lipid biosynthesis in Arabidopsis thaliana Chlamydomonas reinhardtii, Volvox carteri, Ostreococcus lucimarinus, Ostreococcus tauri and Cyanidioschyzon merolae was undertaken on the basis of their conserved motif/domain organization and phylogenetic profile. The results indicated that the core lipid metabolic pathways in all the species are carried out by a comparable number of orthologous proteins. Although the fundamental gene organizations were observed to be invariantly conserved between microalgae and Arabidopsis genome, with increased order of genome complexity there seems to be an association with more number of genes involved in triacylglycerol (TAG) biosynthesis and catabolism. Further, phylogenomic analysis of the genes provided insights into the molecular evolution of lipid biosynthetic pathway in microalgae and confirm the close evolutionary proximity between the Streptophyte and Chlorophyte lineages. Together, these studies will improve our understanding of the global lipid metabolic pathway and contribute to the engineering of regulatory networks of algal strains for higher accumulation of oil.
منابع مشابه
Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges
The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملExpression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors
BACKGROUND Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes h...
متن کاملStudy of Gene Expression Signatures for the Diagnosis of Pediatric Acute Lymphoblastic Leukemia (ALL) Through Gene Expression Array Analyses
Background: Acute lymphoblastic leukemia (ALL) as the most common malignancy in children is associated with high mortality and significant relapse. Currently, the non-invasive diagnosis of pediatric ALL is a main challenge in the early detection of patients. In the present study, a systems biology approach was used through network-based analysis to identify the key candidate genes related to AL...
متن کاملEnhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.
Extended Abstract Introduction and Objective: Polyploidy is one of the main factors in plant adaptation that can increase secondary metabolites production in plants. Salvia officinalis L. is a perennial plant from the Lamiaceae family with a long history of use in the medicinal industry. Tanshinones are crucial active compounds biosynthesized in Salvia. This study was aimed to analyze the expr...
متن کامل